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Ryanodine is a potent calcium channel modulator. In this Letter, we report the 10-step synthesis of the
highly substituted tricyclic ring system of ryanodine. Diels–Alder reaction via dearomatization of 2,
5-dimethylbenzene-1,4-diol and subsequent SmI2-mediated reductive coupling of eight-membered
1,5-diketone efficiently introduced the four consecutive fully substituted carbons of the tricy-
clo[3.3.2.02,6]decane system.

� 2008 Elsevier Ltd. All rights reserved.
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Scheme 1. Retrosynthesis of ryanodine.
Ryanodine (1, Scheme 1),1 a natural product isolated from the
plant Rynia speciosa Vahl, is a potent modulator of the calcium re-
lease channel that is known as the ryanodine receptor.2 The com-
plex molecular architecture of 1 includes five rings and 11
stereogenic centers. From a synthetic perspective, ryanodine 1
and its related structures present an ideal platform to devise effi-
cient strategies for building highly oxygenated multi-cyclic carbo-
skeletons.3,4 In addition, development of a flexible synthetic
scheme to 1 would enable generation of chemical derivatives with
distinct functional properties toward the ryanodine receptors. As
an initial phase of this study, we established a new concise route
to the highly substituted tricyclic core of 1.

To simplify the synthetic scheme to 1, we planned to exploit its
embedded symmetric element (Scheme 1): the functionalized C2-
symmetric tricyclo[3.3.2.02,6]decane system 2 was designed as a
platform structure for efficient construction of 1.5 Specifically,
the C2- and C6-sulfides, and C14/15-olefin of 2 would be used as
the handles for necessary functional group transformations en
route to 1. The four consecutive tetra-substituted carbons (C1,
C4, C5, and C12) in the compact skeleton 2 were considered to
be the most challenging structural feature. The fused 5/5-ring sys-
tem of 2 was envisioned to be cyclized through a transannular
reductive coupling of eight-membered 1,5-diketone 3 with simul-
taneous construction of the C4- and C12-tertiary alcohols.6 By tak-
ing advantage of its symmetry, the eight-membered ring of 3
would be efficiently constructed by applying a two-directional
ll rights reserved.

: +81 3 5841 0568.
e).
ring-expansion7 to the C2-symmetric bicyclo[2.2.2]octane ring sys-
tem 4, followed by pairwise introduction of the sulfides. The two
quaternary carbons of 4 at C1 and C5 were to be introduced via
Diels–Alder reaction.

As shown in Scheme 2, upon heating 2,5-dimethylbenzene-1,4-
diol 5 and maleic anhydride 6 (2.8 equiv) at 210 �C,8 the desired
adduct 7 was generated as a racemate in regioselective fashion.
This intriguing Diels–Alder reaction occurred through dearomati-
zation and set the two quaternary centers (C1 and C5) in a single
step. Hydrolysis of anhydride 7 and subsequent electrolysis of
the resultant bis(carboxylic acid)9 in one pot gave rise to C2-sym-



OH

OH

O

O

O

210 ºC

NaNO2, AcOH
H2O, 0 ºC O

O

O

O

10 (27%, 3 steps) 11 (9%, 3 steps)

6 (2.8 equiv)5

64%

O

O

O
O

O

O

O

4

24%

H2O, 80 ºC;
py, Et3N, 0 ºC
Pt(+)-Pt(-), 0.8 A

7

Me3S(O)I, NaH, THF

HO

OH
NH2

H2N
O

O

8

28% NH3 aq
1,4-dioxane, 120 ºC

9

+

+

1

5

1

5

HNOE

4

12

4

12

12

415

14
15

14

14
3

3

11

11

12

4

14
15

Scheme 2. Synthesis of C2-symmetric bicyclo[3.3.2]decane system.
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metric 4. To prepare for the two-directional ring-expansion, the
two 1,2-amino alcohols of 9 were constructed through stereoselec-
tive epoxide formation using dimethyloxosulfonium methylide,10

followed by regioselective nucleophilic addition of ammonia on
the epoxides of 8 at 120 �C. The newly formed stereochemistries
at C4 and C12 of symmetric 9 were determined by an NOE between
C3–H and C14–H. Sodium nitrite in aqueous acetic acid at 0 �C then
effected the regioselective ring-expansion of the six-membered
ring 9, resulting in formation of the eight-membered ring 10 as
the major product along with the seven-membered ring 11.11 De-
spite the modest overall yield from 5 to 10, this five-step procedure
routinely provides multi-gram quantities of C2-symmetric 10.

Having established a scalable route to bicyclo[3.3.2]decane ring
10, we turned our attention to the transannular reaction for con-
struction of the tricyclic system 2 (Scheme 3). Before doing so,
the b-positions of the ketones of 10 needed to be functionalized.
Treatment of diketone 10 with trimethylsilyl trifluoromethanesul-
fonate and triethylamine led to bis(enol ether) 12, which was con-
verted to bis(a,b-unsaturated ketone) 13 using 2,3-dichloro-5,6-
dicyano-1,4-benzoquinone (DDQ) in the presence of 2,6-lutidine.12

Facile 1,4-addition of ethanethiol from the a-face of 13 was pro-
moted by DBU, affording 3 as a single diastereomer.

Samarium iodide13 was successfully applied to the reductive
transannular cyclization of the eight-membered ring into the 5/
5-fused ring system, and simultaneously introduced the fully
substituted C4- and C12-carbons (Scheme 3). Namely, treatment
of bis(b-sulfide ketone) 3 with 4 equiv of SmI2 in THF at 0 �C deliv-
ered the desired C2-symmetric tricyclo[3.3.2.02,6]decane system 15
in quantitative yield. Next, the 1,2-diol of 15 was masked with ace-
tonide under acidic conditions to afford 2, the stereochemistries of
which were unambiguously established by the physical data
including an NOE between C2–H and the methyl group of the ace-
tonide.14 Therefore, the functionalized tricycle was synthesized
from 5 in only 10 steps.

In summary, a concise route to the core tricyclic framework of
ryanodine was developed by taking advantage of the C2-symmetry
of the intermediates. Key reactions of the synthesis include (i) the
direct Diels–Alder reaction of 2,5-dimethylbenzene-1,4-diol to
introduce two quaternary carbons (5 + 6?7); (ii) two-directional
ring expansion (9?10); and (iii) SmI2-mediated reductive cycliza-
tion to construct the two-tetrasubstituted carbons (3?15). Further
studies toward the total synthesis of ryanodine will be reported in
due course.
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